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Abstract—A simulation study of the channel capacity of a
multiple-input multiple-output (MIMO) antenna system exploit-
ing multiple polarizations is carried out. We focus on a simple
yet realistic trimonopole antenna structure, taking into account
all the mutual coupling and casing effects using the computational
electromagnetics solver—numerical electromagnetics code. Simu-
lation results show that, with a special transmit geometry, using
the collocated trimonopole antennas at a size-constrained receiver
can offer channel capacity that approaches the capacity of an
uncorrelated MIMO Rayleigh channel. In addition, it is shown
that the capacity increase is mainly attributed to polarization
diversity instead of pattern diversity. Furthermore, we find that
the mutual coupling and casing effects in the trimonopole system
can actually provide a large capacity increase with less constraint
on the antenna configurations than the idealized tridipole system.

Index Terms—Channel capacity, fading correlation, multiple-
input multiple-output (MIMO) systems, multiple polarizations.

I. INTRODUCTION

A PROMISING way of achieving high data rate in wireless
communications is to use multiple antennas at both the

transmitter and the receiver, forming a multiple-input multiple-
output (MIMO) system [1], [2]. Parallel subchannels can be
established between the transmitter and the receiver antennas if
the fading of the transmitter–receiver pairs is uncorrelated [3].
Correlated fading can pose a serious problem, typically at the
mobile handset where the spacing of antenna elements is highly
constrained. Polarization diversity and pattern diversity have
been exploited to decrease the signal correlation of local anten-
nas at mobile handsets [4]. The performance of a MIMO system
employing dual-polarized antennas has been investigated in [5]
and [6].

Recently, many researchers have examined the multiple
polarizations for a MIMO antenna system. Andrews et al. [7]
argued for a wireless MIMO link that provides six uncorrelated
signals with three electric dipoles and three magnetic dipoles
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at the transceiver. They assumed an antenna model with ideal
polarizations and a rich scattering environment, and verified
their analysis experimentally using three orthogonal electric
dipoles. Svantesson [8] studied the effect of multipath angular
spread on the channel capacity of such a system, and showed
that the capacity increase is due to a combination of polarization
and pattern diversity. Stancil et al. [9] presented experimental
results verifying that collocated electric and magnetic dipoles
can be used to realize independent channels. Andersen and
Getu [10] proposed an antenna cube with an electric dipole on
each of the 12 edges. The diversity among the antennas is a
combination of space and polarization diversity.

In this paper, we present a simulation study to investigate
the capacity of a multipolarized MIMO channel. The capacity
increase is affected by various system parameters, such as
antenna configurations, propagation environments, and system
assumptions. For the mobile handset, we use a realistic antenna
structure consisting of three collocated monopole antennas
mounted on a small box (to simulate the handheld unit). The
numerical electromagnetics code (NEC) [11], a full-wave com-
putational electromagnetic solver, is used to simulate the an-
tenna radiation patterns and polarizations taking into account
all the mutual coupling and casing effects. The antenna pat-
tern from the NEC model is verified by measured data from
an experimental prototype. Based on the simulation results,
we examine the effect of different propagation environments,
pinpoint the channel capacity increase from polarization and
pattern diversity, and compare the performance to idealized
dipole-antenna systems.

II. MIMO CHANNEL CAPACITY WITH ANTENNA

POLARIZATION DIVERSITY

We assume a MIMO downlink with nT transmit antennas
at the base transceiver station (BTS) and nR receive antennas
at the mobile station (MS), where the channel is known to the
receiver but not to the transmitter. When the transmitted signals
are independent with equal power at each antenna, the ergodic
channel capacity taken over the probability distribution of G is
given by [1]

C = E

{
log2

[
det

(
InR +

P

nTN
GG†

)]}
(1)

where G is an nR × nT transfer matrix of the flat-fading
channel, P is the total transmitted power, and N is the variance
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Fig. 1. MS prototype with three quarter-wavelength monopoles (polarization diverse antennas). (a) NEC model. (b) Experimental model. (c) X–Z section of
antenna radiation patterns from NEC simulation and measurement.

of the independent Gaussian noise at each receive antenna.
Both the signal strength and the channel correlation can affect
the capacity [5]. Focusing on the effect of channel correlation
on the capacity, we normalize the channel in the sense that
E[‖G‖F] = (nTnR)1/2, where ‖ · ‖F denotes the Frobenius
norm. This normalization has been used in other work such as
[12]. A deeper study of normalization issues, along the lines of
[13], is a topic for future work.

The elements of G are correlated by an amount that depends
on the propagation environment as well as the polarization of
the antenna elements and the spacing between them. One model
for G that takes the fading correlation into account splits the
correlation into two independent components as receive corre-
lation and transmit correlation G = Ψ1/2

r GwΨ1/2
t [14], [15].

Ψr and Ψt are respectively the covariance matrices of the re-
ceive and transmit antennas, and Gw has uncorrelated complex
Gaussian entries. Suppose receive antennas i and j, with field
patterns Ai and Aj , respectively, are exposed to the incident
wave represented by electric field E. We assume that the phase
angles of Eθ and Eφ are independent and uniformly distributed
in [0, 2π), and they are independent for waves arriving from
different directions. Thus, the (i, j)th entry of Ψr is [16]

Ψ(i,j)
r =

1
σiσi

∮
E

{
[Ai(Ω) · E(Ω)]

[
A∗

j(Ω) · E∗(Ω)
]}

dΩ

(2)

where σi and σj are the variances of signals received by an-
tennas i and j, respectively. Ω is the solid angle over (θ, φ). In
general, Ai and Aj contain both amplitude and phase. Suppose
antennas i and j are collocated with no spatial diversity, it
follows that the phases of Ai and Aj are the same with respect
to angle Ω. As in (2), the entries of Ψr are the weighted
correlations between receive antennas, where the weights are
the angular spectrum of the incident field E. In order to achieve
large channel capacity, Ψr needs to be close to an identity

matrix. The correlation coefficient Ψ(i,j)
r , for i �= j, can be

diminished by reducing the similarity in antenna polarizations
and/or patterns over the angular space.

III. SYSTEM ASSUMPTIONS AND HANDSET MODEL

In the simulation, we consider a MIMO system that employs
three transmit antennas at the BTS and three receive antennas
at the MS. The antennas at the BTS can be placed sufficiently
apart to provide decorrelation. Therefore, the channel matrix
G has the same statistics as Ψ1/2

r Gw [17]. The orientations
of the BTS antennas are different, e.g., 90◦ slanted to each
other, in order to provide multipolarized transmission. Based
on the results on dual-polarized systems [5], [6], it is unlikely
that the scatterers, especially in a suburban environment, would
depolarize signals significantly. However, incident waves with
different polarizations are important for the receiver to exploit
the antenna polarization diversity. With this special transmit
geometry coupled with the random orientation of the receive
handset, we may assume that the incident waves arriving at the
MS have equal average power in all polarizations.

The MS has a compact array structure consisting of three
quarter-wavelength monopoles mounted on a conducting box
of dimensions 3 × 5 × 10 cm3 (to simulate the handheld unit).
With a carrier frequency of 2 GHz, the length of each monopole
antenna is about 3.75 cm. The feed points of the monopoles are
collocated. Each antenna is symmetrically slanted with an angle
ω with respect to the zenith, thus creating polarization dissim-
ilarity. The NEC is used to simulate the antenna radiation pat-
terns and polarizations. We used the standard “active element”
approach to fully take into account the electromagnetic cou-
pling between the elements and casing effects. This approach
determines the gain pattern with one element excited and all
the other elements terminated in their source impedances [18].
Fig. 1(a) shows the wire mesh used in the NEC simulation.
Fig. 1(b) shows an experimental MS antenna prototype. The
antenna radiation patterns from simulation and measurement
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Fig. 2. Channel capacity of a 3 × 3 MIMO system with antenna polarization
diversity in various environments. Average receiver SNR = 10 dB. (a) Capac-
ity of 3 × 3 Rayleigh channel. (b) Capacity of 3 × 1 Rayleigh channel.

are compared in Fig. 1(c). It shows the patterns in the X–Z plane
at ω = 45◦, with the excitation at one antenna port and 50-Ω
terminations at the other two ports. The antenna pattern from
the NEC model agrees well with that from the measurement.
The NEC results are used throughout our simulations.

The propagation environments for the MS are simulated
in three scenarios: indoor, outdoor dense urban, and outdoor
suburban. For indoor, the angular spectrum of incident waves
is assumed to have a uniform elevation spectrum θ ∈ [0, 180◦)
and a uniform azimuth spectrum φ ∈ [0, 360◦). For outdoor
dense urban, the angular spectrum of incident waves is limited
to a uniform elevation spread of 30◦ about the horizontal plane,
with a uniform azimuth spectrum. For outdoor suburban, the
incident waves are also assumed to have a uniform elevation
spread of 30◦ about the horizontal plane, but with a Laplacian
azimuth spectrum of σφ = 5◦ [19] and the main azimuth direc-
tion randomly selected in [0, 360◦).

IV. RESULTS

Fig. 2 illustrates the dependence of channel capacities on the
slanting angle ω of the MS monopoles in different propagation
environments. We assume perfect transmit power control, hence
a normalized channel. Suppose ρ = (P/nTN) = 10 dB, where
P , nT, and N are defined in (1). Note that the difference
of receive branches is considered in the transfer matrix G.
With a normalized G, ρ is the average SNR over all receive
antennas. We observe that in rich scattering environments such
as indoor or outdoor dense urban, the decorrelation of signals
at local antennas can be achieved with moderate slanting angle
(ω > 20◦), and the channel capacity approaches the capacity of
an uncorrelated 3 × 3 Rayleigh channel. In the suburban envi-
ronment with small azimuth spread, the capacity performance
is degraded modestly.

In addition to the polarization difference among the receive
antennas, the angular patterns in the principal polarization are
also different. Since antenna pattern diversity and polarization

Fig. 3. Channel capacity of a 3 × 3 MIMO system with different diversity
schemes. Average receiver SNR = 10 dB. (a) Capacity of 3 × 3 Rayleigh
channel. (b) Capacity of 3 × 1 Rayleigh channel.

diversity are always coupled in practice, the simulation devel-
oped here offers a tool to examine which one is more essential
in contributing to the capacity gain. We carry out the simulation
by deviating from the NEC antenna radiation model to two
ideal models.

1) Polarization-diverse only: We use the antenna polariza-
tions from the NEC model, but set the angular patterns to
be isotropic in radiation intensity. That is, we substitute
(Ai(Ω)/|Ai(Ω)|) and (Aj(Ω)/|Aj(Ω)|) for Ai(Ω) and
Aj(Ω) in (2), respectively.

2) Pattern-diverse only: We use the pattern differences in
radiation intensity, but no polarization diversity. That is,
we substitute |Ai(Ω)| and |Aj(Ω)| for Ai(Ω) and Aj(Ω)
in (2), respectively.

Fig. 3 compares the MIMO channel capacity of the trimono-
pole antennas with those from the polarization-diverse-only and
the pattern-diverse-only models. Indoor environment is simu-
lated to maximize the effects of different diversity factors. We
observe that the channel capacity of the polarization-diverse-
only model is very close to that of the actual trimonopole
system. The capacity of the pattern-diverse-only model, on
the other hand, is much lower. Thus, it is indeed polarization
diversity that accounts for most of the capacity increase in
antenna-diverse MIMO systems. This confirms the assumption
by Andrews et al. [7].

Finally, we compare the capacity of the trimonopole system
to that of the idealized tridipole model used in previous works.
Three electrically short dipoles are orthogonally collocated in
the ideal tridipole model, where the antenna radiation pattern
of a vertical dipole (ω = 0) is A(Ω) = sin(θ)âθ. The mutual
coupling between local antennas and the casing effect are
not considered. In the outdoor dense urban environment, the
slanting angle of antennas that maximizes the channel capac-
ity can be calculated as ω∗ ≈ (1/2) cos−1[−(π + 15)/(7π +
9)] = 62.9◦. This agrees with the simulation result in Fig. 4.
In the outdoor suburban environment with Laplacian azimuth
spectrum, Ψr cannot be exactly an identity matrix due to
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Fig. 4. Channel capacity of a 3 × 3 MIMO system with antenna polarization
diversity (ideal model). Average receiver SNR = 10 dB. (a) Capacity of 3 ×
3 Rayleigh channel. (b) Capacity of 3 × 1 Rayleigh channel.

the asymmetry of the weighted correlations. Therefore, the
channel capacity cannot reach the capacity of the uncorrelated
3 × 3 Rayleigh channel, as shown in Fig. 4. One observation
comparing Fig. 4 with Fig. 2 is that practical antennas with
mutual coupling and casing effects can provide large capacity
increase with less constraint on antenna configurations than the
idealized tridipole system.

V. CONCLUSION

We presented a simulation study of MIMO channel capacity
as a function of antenna configurations and propagation envi-
ronments. For a size-constrained receiver, antenna polarization
diversity provides local decorrelation, hence increased channel
capacity. We focused on a simple yet realistic trimonopole
antenna structure, and we took into account all the mutual
coupling and casing effects using full-wave electromagnetic
simulation. We arrived at the following conclusions.

1) The trimonopole antennas can provide a large channel
capacity that approaches the capacity of the uncorrelated
Rayleigh channel; the increase is especially pronounced
when the mobile is in a rich-scattering environment.

2) Although the decorrelation of received signals is due to a
combination of antenna polarization and pattern diversity,
the capacity gain is mainly attributed to the polarization
diversity.

3) The trimonopole antennas with mutual coupling and cas-
ing effects can provide large capacity increase with less
constraint on antenna configurations than the idealized
tridipole system.

Further research will be conducted on polarization-diverse
MIMO systems using improved propagation models and re-
laxing the channel normalization assumption. This will involve
more sophisticated models of the channel matrix.
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